
Binder Enhancements in Oreo
Linux Plumbers Android Microconference
September, 2017

Todd Kjos <tkjos@google.com>

mailto:tkjos@google.com

Proprietary + Confidential

Binder Features added for Oreo

● Multiple Binder Domains
● Scatter-Gather
● Fine-Grained Locking
● RT Priority Inheritence
● Binder Allocator: Security Bugfix
● Binder Allocator: Lazy Free via Shrinker

Proprietary + Confidential

Multiple Binder Domains

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

● Each domain has its own:
○ Device node (/dev/binder, /dev/hwbinder, …)
○ ServiceManager (service registration and discovery)

● Domains are isolated from each other
○ binder: (aka “framework binder”) communication between non-vendor

processes
○ hwbinder: communication between non-vendor processes and vendor

processes (HALs) and between vendor processes that implement HIDL
interfaces

○ vndbinder: communication between vendor processes that implement
AIDL interfaces

● creation of domains are controlled at compile time by
CONFIG_ANDROID_BINDER_DEVICES Kconfig option. The three domains
listed above are the default and are all required for Oreo

Proprietary + Confidential

● Normal pattern is to copy data 3 times

○ Serialize into parcel in the calling process

○ Kernel copy to target process

○ Unserialize in the target process

● With scatter-gather, this is reduced to only the kernel copy to target process

○ Currently enabled for HIDL interfaces (hwbinder) only

Scatter-Gather

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Scatter-Gather Performance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Used to have single global mutex to protect binder driver state

● Change motivated by priority-inversion cases causing long 95th/99th percentile latencies

○ Contention wasn’t really the issue

○ Low-prio task preempted while holding mutex block high-prio tasks

○ Results in long delays inducing in dropped-frames etc

● Since 2015 (Nexus 6p/5x), worked around this by disabling preemption when mutex is held

○ Preemption re-enabled for user data copies, allocations etc

○ It was a hacky, non-upstreamable solution -- but effective

○ upstream binder driver was out-of-date vs what was being shipped

● Moved to fine-grained locking via spinlocks and per-process mutex (instead of global)

Fine-Grained Locking

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Fine-Grained Locking Performance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Fine-Grained Locking Performance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other sourceLow-priority load running on cpu0. Measure latency of C/S pair on cpu3

Proprietary + Confidential

● binder already had nice priority inheritence

● Not sufficient with more Android processes running at real-time priority (especially with Treble’s

binderized HALs)

● Binder thread serving an RT client is promoted to appropriate RT sched class + prio

● RT Priority Inheritance can be enabled on a node-by-node basis

○ Currently enabled for hwbinder, disabled for framework binder

RT Priority Inheritance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

RT Priority Inheritance Performance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Transaction header (containing kernel ptrs) mapped read-only in target user space

Binder Allocator: Security Bugfix

Client Process Server Process

transact

header
(kernel ptrs) transaction data copy

Read Only

 binder driver

buffer buffer

mmaped

...

data copied

...

transaction
data

Proprietary + Confidential

Binder Allocator: Security Bugfix (continued)

Client Process Server Process

transact

header

transaction data copy

Read
Only

 binder driver

buffer buffer

mmaped

... ...

data copied

... ...
data ptr

On kernel
heap. Not
mapped

transaction
data

● Move buffer header out of shared area -- no longer visible to userspace

Proprietary + Confidential

● Problem: Since buffer header is no longer in the mmap’d space, it is freed when the last
transaction is complete. Many more allocs/frees

● Solution: Use Linux shrinker to free pages

Binder Allocator: Lazy Free via Shrinker

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

FREE

data ptr
init init

Before Security Patch After Security Patch

Proprietary + Confidential

Binder Allocator: Lazy Free via Shrinker Performance

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Q & A

